Imperial College London

Transport Phenomena in the Lymphatic System

James E. Moore Jr.¹, David C. Zawieja²

Background

Motivations

- · Fluid and protein balance
- All deadliest forms of cancer spread via lymphatics
- 90% of cancer deaths are due to secondary tumors
- All immune responses rely on lymph flow and chemokine concentration gradients
- Pathologies such as lymphoedema with no cure
- A well-developed model can improve our understanding of the system behavior

Pumping Model Parameters

Active vessel contraction Passive behaviour of the vessel (Lymphatic Muscle Cell contraction) Pressure-Diameter relationship: Refractory period: Transmural pressure: $\Delta p_{\rm tm} = p_{\rm m} - p_{\rm e}$ Refined PD relation Exp. data (Davis et al. 2011) (cmH² 20 (E). -200-0 **Lumped Parameter** Non-linear ODE for diameter Solved computationally (MATLAB)

Valve Behavior:

Agent-Based Model of Immune Cell Actions

Many of the body's tissues exhibit subatmospheric interstitial pressures

Lymphatics pump "up to subclavian vein by squeezing

 How is fluid "sucked" in?"

• The key: Diastolic filling Requires positive transmural pressure or vessel tethering

Pumping is unchanged when three relevant pressures are adjusted in concert

Flow and Chemokine Gradients in Lymph Nodes

This research was funded by the National Institutes of Health, grant U01-HL-123420.